Silhueta de pessoa indiferenciada

Hermenegildo Borges de Oliveira

Professor auxiliar
Faculdade de Ciências e Tecnologia
Subsistema
Docentes Universitário
Unidade ID externa
Centro de Matemática, Aplicações Fundamentais e Investigação Operacional
Regime
Exclusividade
Vínculo
CT em Funções Públicas por tempo indeterminado
Hermenegildo Borges de Oliveira, doutorado em Matemática, é professor no Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade do Algarve e é investigador no Centro de Matemática, Aplicações Fundamentais e Investigação Operacional da Faculdade de Ciências da Universidade de Lisboa. É especialista na análise de Equações Diferenciais Não-lineares que modelam fenómenos naturais, em especial escoamentos de fluidos. Tem mais de 30 artigos científicos, com arbitragem científica, publicados em revistas de circulação internacional, em capítulos de livros e em actas de conferências. É também autor de diversas sebentas de apontamentos de Cálculo e de Equações Diferencias Ordinárias.

Produções

S N Antontsev; H B de Oliveira; Kh Khompysh. 2021. "The classical Kelvin–Voigt problem for incompressible fluids with unknown non-constant density: existence, uniqueness and regularity". Nonlinearity. https://doi.org/10.1088/1361-6544/abe51e
de Oliveira, Hermenegildo Borges. 2021. "Kelvin–Voigt equations with anisotropic diffusion, relaxation and damping: Blow-up and large time behavior". Asymptotic Analysis. https://doi.org/10.3233/ASY-201597
de Oliveira, Hermenegildo Borges; Lopes, Nuno D.. 2021. "Continuous/discontinuous Galerkin approximations for a fourth-order nonlinear problem". Computers & Mathematics with Applications, 97: 122-152. https://doi.org/10.1016/j.camwa.2021.05.034
de Oliveira, Hermenegildo Borges. 2020. "Regularity and uniqueness of Kelvin-Voigt models for nonhomogeneous and incompressible fluids". Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1666/1/012003
S.N. Antontsev; H.B. de Oliveira; Kh. Khompysh. 2019. "Kelvin–Voigt equations perturbed by anisotropic relaxation, diffusion and damping". Journal of Mathematical Analysis and Applications. https://doi.org/10.1016/j.jmaa.2019.01.011
de Oliveira, Hermenegildo Borges. 2019. "Partial regularity of the solutions to a turbulent problem in porous media". Proceedings of the American Mathematical Society. https://doi.org/10.1090/proc/14545
M. Chipot; H. B. de Oliveira. 2019. "Some results on the p(u)-Laplacian problem". Mathematische Annalen. https://doi.org/10.1007/s00208-019-01803-w
de Oliveira, Hermenegildo Borges. 2019. "Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids". Communications in Mathematical Sciences. https://doi.org/10.4310/cms.2019.v17.n7.a7
M. Chipot; H. B. de Oliveira. 2019. "Correction to: Some results on the p(u)-Laplacian problem". Mathematische Annalen. https://doi.org/10.1007/s00208-019-01859-8
de Oliveira, Hermenegildo Borges. 2019. "Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids". Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1268/1/012008
De Oliveira, H.B.; de Oliveira, Hermenegildo Borges. 2019. "Generalized Navier-Stokes equations with nonlinear anisotropic viscosity". Analysis and Applications. https://doi.org/10.1142/S021953051950009X
Hermenegildo Borges de Oliveira; Sandra Pinelas; Fernando Granja-Martins; Helena Maria Fernandez. 2019. "Map production and data analysis with local parameters". 4open. https://doi.org/10.1051/fopen/2019022
de Oliveira, Hermenegildo Borges. 2018. "A Stationary one-equation turbulent model with applications in porous media". Journal of Mathematical Fluid Mechanics. https://doi.org/10.1007/s00021-017-0325-6
de Oliveira, Hermenegildo Borges. 2018. "A note on the existence for a model of turbulent flows through porous media". https://doi.org/10.1007/978-3-319-75647-9_3
H. B. de Oliveira; A. Paiva. 2017. "Existence for a one-equation turbulent model with strong nonlinearities". Journal of Elliptic and Parabolic Equations. https://doi.org/10.1007/s41808-017-0005-y
Ferreira, J.; De Oliveira, H.B.. 2017. "Parabolic reaction-diffusion systems with nonlocal coupled diffusivity terms". Discrete and Continuous Dynamical Systems- Series A, 37 (5): 2431-2453. https://doi.org/10.3934/dcds.2017105
de Oliveira, H.B.; Paiva, A.. 2016. "On a one-equation turbulent model with feedbacks". https://doi.org/10.1007/978-3-319-32857-7_5
Antontsev, S.N.; de Oliveira, H.B.. 2016. "Evolution problems of Navier–Stokes type with anisotropic diffusion". Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie A: Matematicas, 110 (2): 729-754. https://doi.org/10.1007/s13398-015-0262-2
Hermenegildo Borges de Oliveira. 2015. "Anisotropically diffused and damped Navier-Stokes equations". Em Dynamical Systems and Differential Equations, {AIMS. https://doi.org/10.3934/proc.2015.0349
de Oliveira, Hermenegildo Borges. 2014. "Ice sheet flows in polar climates (Portuguese)".
Coayla-Teran, E.A.; Ferreira, J.; de Magalhães, P.M.D.; de Oliveira, H.B.. 2014. "On a stochastic coupled system of reaction-diffusion of nonlocal type". https://doi.org/10.1007/978-3-642-54271-8_15
Antontsev, S.N.; de Oliveira, H.B.. 2014. "Analysis of the existence for the steady navier-stokes equations with anisotropic diffusion". Advances in Differential Equations, 19 (5-6): 441-472. http://www.scopus.com/inward/record.url?eid=2-s2.0-84898736065&partnerID=MN8TOARS
Antontsev, S.N.; De Oliveira, H.B.. 2014. "Asymptotic behavior of trembling fluids". Nonlinear Analysis: Real World Applications, 19 (1): 54-66. https://doi.org/10.1016/j.nonrwa.2014.02.005
de Oliveira, H.B.. 2013. "Existence of weak solutions for the generalized Navier-Stokes equations with damping". Nonlinear Differential Equations and Applications, 20 (3): 797-824. https://doi.org/10.1007/s00030-012-0180-3
de Oliveira, Hermenegildo Borges. 2012. "Existence results of weak solutions for viscous fluids (Portuguese)". Boletim da Sociedade Portuguesa de Matemática.
Antontsev, S.N.; De Oliveira, H.B.. 2011. "The Oberbeck-Boussinesq problem modified by a thermo-absorption term". Journal of Mathematical Analysis and Applications, 379 (2): 802-817. https://doi.org/10.1016/j.jmaa.2011.02.018
Antontsev, S.N.; de Oliveira, H.B.. 2010. "The navier-stokes problem modified by an absorption term". Applicable Analysis, 89 (12): 1805-1825. https://doi.org/10.1080/00036811.2010.495341
De Oliveira, B.H.; De Oliveira, H.B.. 2010. On the influence of an absorption term in incompressible fluid flows. https://doi.org/10.1007/978-3-642-04068-9_25
de Oliveira, Hermenegildo Borges; Antontsev, S.N.; Oliveira, H.B.. 2008. "Qualitative properties of the ice-thickness in a 3D model". WSEAS Transactions on Mathematics, 7 (3): 78-86. http://www.scopus.com/inward/record.url?eid=2-s2.0-48849105945&partnerID=MN8TOARS
de Oliveira, Hermenegildo Borges. 2007. "Mathematical models in dynamics of non-Newtonian fluids and in glaciology". Em In the CD-ROM of the Proceedings of the Congress on Numerical and Computational Methods in Engineering, 20 pp., Faculdade de Engenharia da Universidade do Porto, APMTAC, SEMNI and ABMEC.
de Oliveira, Hermenegildo Borges. 2007. "Navier-Stokes equations with absorption under slip boundary conditions: existence, uniqueness and extinction in time". RIMS Kôkyûroku Bessatsu B1, Kyoto University. http://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu/open/B1/pdf/B1-2.pdf
de Oliveira, Hermenegildo Borges. 2007. "Finite time localized solutions of fluid problems with anisotropic dissipation". Em International Series of Numerical Mathematics: Free Boundary Problems. https://doi.org/10.1007/978-3-7643-7719-9_3
de Oliveira, Hermenegildo Borges. 2005. "On a thermal effect without phase changing (Portuguese)". Em In the CD-ROM of the Proceedings of the Congress of Numerical Methods in Engineering, 15 pp. Universidad de Granada. SEMNI and APMTAC.
de Oliveira, Hermenegildo Borges. 2005. "Stopping a viscous fluid by a feedback dissipative field: thermal effects without phase changing". Em Progress in Nonlinear Differential Equations and Their Applications: Trends in Partial Differential Equations of Mathematical Physics. https://doi.org/10.1007/3-7643-7317-2_1
de Oliveira, Hermenegildo Borges. 2004. "Localization of weak solutions for non-Newtonian fluid flows (Portuguese)". Em In the CD-ROM of the Proceedings of the Congress of Computational Methods in Engineering, 15 pp. National Laboratory of Civil Engineering, Lisbon. APMTAC and SEMNI.
Antontsev, S.N.; Díaz, J.I.; De Oliveira, H.B.. 2004. "Stopping a viscous fluid by a feedback dissipative field: II. The stationary navier-stokes problem". Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 15 (3-4): 257-270. http://www.scopus.com/inward/record.url?eid=2-s2.0-84887252549&partnerID=MN8TOARS
Antontsev, S.N.; Diaz, J.I.; De Oliveira, H.B.. 2004. "Stopping a viscous fluid by a feedback dissipative field: I. the stationary Stokes problem". Journal of Mathematical Fluid Mechanics, 6 (4): 439-461. https://doi.org/10.1007/s00021-004-0106-x
de Oliveira, Hermenegildo Borges. 2004. "Stopping a viscous fluid by a feedback dissipative field: II. The stationary navier-stokes problem". Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti Lincei Matematica e Applicazioni, 15 (3-4): 257-270. http://www.bdim.eu/item?fmt=pdf&id=RLIN_2004_9_15_3-4_257_0
Antontsev, S.N.; Díaz, J.I.; De Oliveira, H.B.. 2002. "On the confinement of a viscous fluid by means of a feedback external field". Comptes Rendus - Mecanique, 330 (12): 797-802. https://doi.org/10.1016/S1631-0721(02)01536-X
 

Contacto